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Obijectives

e Distinguish artificial intelligence-assisted cough detection and cough classification

e |dentify the potential use cases of digital cough monitoring in tuberculosis control
and respiratory medicine



About cough

Cough is a biological phenomenon in which specific sequential
patterns of inspiration and expiration (without and then with air flow)
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Cough is one of the most common symptoms of pulmonary TB but
it's not perfectly sensitive either
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FIGURE 2 | A typical cough sound structure. There are three common

Current ways of assessing cough are limited by recall biases,
stigma, etc. L g e o e

Belkacem, et al. Front. Med. 2021
Murray and Nadel Textbook of respiratory medicine




Renewed interest in cough

Acoustic epidemiology - The analysis of human sounds
(voice, coughs, sneezes, wheezing, etc) to study the
determinants, patterns and distribution of disease
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Acoustics and artificial intelligence

|dentification of human coughs sounds among ambient sounds

i.e. transforming cough as a “symptom” in cough as a “sign”

Enables geospatial and temporal aggregation

Cough detection
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FIGURE 3 | Workflow for cough audio processing. For segmentation phase, predefined thresholds can be chosen based on the physiology of cough sounds. The raw
recorded sounds contains a lot of silent fragments (with low intensity) and background noise. Therefore, silence removal phase is required for saving storage space.
For signal quality check, an estimate of the signal-to-noise ratio (SNR) can be computed by taking the ratio of the power of the cough part of the signal to the ratio of
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FIGURE 4 | Cough time-frequency representation analyses. (A) Cough signal 16-bit, frequency range 22050Hz. (B) Power spectrum of the cough audio frame (FFT).
(C) Spectrogram. (D) MFCC.

the rest of the signal.
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Cough classification

Identification of cough sounds associated with specific clinical conditions or stages of disease

Belkacem, et al. Front. Med. 2021




Cough detection and classification for tuberculosis control

Programmatic surveillance tool
Community-based screening or
active case finding tool
*  Passive cough alert tool
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Fig. 2 Potential use cases for digital cough monitoring in the tuberculosis cascade of care. Each step in the TB care cascade is represented as a bar. The
gaps in the cascade are in red between each step. Boxes pointing at the gaps represent possible digital cough-based solutions to address various gaps. The
height of the bar graphs and the length of the gaps are not scaled to represent true values. They are intended to help illustrate the different steps of the care
cascade and points at which people with TB may fail to benefit from care. (Cascade of care adapted from Fig. 1 of Subbaraman et al.}*°.



Syndromic surveillance works

Acoustic surveillance of cough for detecting respiratory disease
using artificial intelligence

Juan C. Gabaldén-Figueira ®"%, Eric Keen®, Gerard Giménez®, Virginia Orrillo®, Isabel Blavia®,

Dominique Héléne Doré’, Nuria Armendariz’, Juliane Chaccour’, Alejandro Fernandez-Montero’,
Javier Bartolomé®, Nita Umashankar®, Peter Small®>?, Simon Grandjean Lapierre ®>2%*2 and
Carlos Chaccour ®-2:11-12

Temporal association between aggregated cough rates and

COVID « waves », both within the cohort and the population

Potential value in surveillance and preparedness ?
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FIGURE 3 Cough and usage trends compared to coronavirus disease 2019 (COVID-19) incidence. Incidence of
COVID-19 in a) the entire study area compared to b) the evolution of cough trends in the monitored cohort;
c) after the exclusion of the participant with chronic cough; and d) compared to the number of active users.
The continuous line represents the 7-day rolling average.



Syndromic surveillance works
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Real-time temporal and geospatial aggregation of cough events among TB patients

Potential value in secondary case finding?

Tsang et al. Unpublished



Cough detection measures treatment response

Longitudinal passive cough monitoring and its implications for
detecting changes in clinical status

Juan C.
Julian
Carlos
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e Chaccour, Minda
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, Simon Grandjean Lapierre and

Digital cough monitoring data corelates with clinically significant events

Potential value in treatment response monitoring?
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FIGURE

5 Changes in cough rates for two selected participants following specific interventions.

participant treated for a refractory chronic cough (Case 1) and b) a chronic smoker attempting to quit (Case 2).

al A

The dotted lines indicate the date of specific interventions. The shaded areas represent the periods used to
calculate the pre- and post-intervention mean cough rates surrounding a buffer period.



Cough detection measures treatment response

Both the cough rate and circadian variability

rapidly regress with TB therapy

What would we see in case of failure?
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Figure 2.  Circadian cycle of cough frequency during treatment for study group. A, Smoothed trends in cough from day —1 to day 7 of treatment. Each day begins at 3 am,
as this is the time when recordings began. 5, Separate negative binomial generalized estimating equation models fitted for each day following treatment. All recordings,
regardless of total length, were included (n = 12108 hours of recording). Random-effects modeling was used to adjust for study participant. Circadian cycles of cough were
reflected by sine/cosine terms.

Proano et al. Clin. Inf. Dis 2017



Cough detection measures treatment response

Participants with microbiologically confirmed TB have

significantly higher median cough per hour than participants

Diagnosis
with non-TB respiratory diseases. gConfirmed TB (n=144)
= Clinical TB (n=48)

Other respiratory disease (n=373)

Coughs per hour
©

Median cough per hour regresses following diagnosis and

treatment initiation -

5 10

What would we see in case of failure? Day of recording

Huddart et al. Int J. Tuberc. Lung Dis. 2022



Cough detection as a pronostic biomarker

COVID-19 confirmed patients requiring hospitalization
Continuous cough monitoring in individual rooms
Continuous monitoring of oxygen support and

categorical clinical outcomes (e.g. room air,
noninvasive ventilation, intubation, death)




Ventilation or death outcome

Sensitivity (%)

Cough detection as a pronostic biomarker

Transitional cough rate as an outcome predictor

Total enrollement Initial 24 hours Initial 6 hours
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COugh Diagnostic Algorithm for Tuberculosis

CODA TB DREAM Challenge
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» Diagnostic cohort of > 2100 TB suspects self
referred to care for TB diagnostics

» High quality solicited cough sounds recording
and clinical parameters

» Well characterized TB disease using composite
diagnostic based on Xpert & culture

https.//www.synapse.org/#!Synapse:syn31472953/wiki/



Assessing cough classification performance
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TB cough classification

Subchallenge 1:

Predict ‘positive’ TB diagnosis using cough recordings only.

Subchallenge 2:

Predict ‘positive’ TB using cough recordings and additional demographic/clinical variables (Age,
Sex, Height, Weight, BMI, Smoking, Reported Duration of Cough, Prior TB, Hemoptysis, Heart

Rate, Temperature, Fever, Night Sweats, and Weight loss).

Assessment

Submissions will be scored using the two-way partial area under the receiver operator
characteristic curve (PAUROC) [1] with Sensitivity (TPR) > 0.8 and 1 - Specificity (FPR) < 0.4
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WHO 2019



TB cough classification

Subchallenge 1 Subchallenge 2
11= name 1= status Y 1T submitterid Y  auc_roc 1= round 1= name 17 status Y 1T submitterid Y auc_roc 1=
model-c1-5 ACCEPTED o Blue Team ~ 0.6687056737588631 4 syn51037332  ACCEPTED & Al-Campus  7447765957446809
High School Team
my-model-c1-6 ACCEPTED  o» BlyeTeam  0.6618794326241135
5 syn51009842 ACCEPTED = Yuanfang 0.7457446808510638
my-model-c1-4 (endpoint) ACCEPTED  o» Blye Team  0.6418439716312057 Guan Lab Team
syn50896810 ACCEPTED o1 BlueTeam  0.6416666666666666 5 my-model-c2-6 ~ ACCEPTED  o» BlyeTeam  0.7422872340425531
syn49187199 ACCEPTED o LcL 0.6415780141843972 5 syn50999655  ACCEPTED & Metformin-  ( 539804964539007
= 121
5 syn49187199 ACCEPTED o LCL 0.6415780141843972
3

Over 150 participants — Approximately 10 teams submitting classification models in the last rounds
Selected preliminary leaderboard results confirm that there is a TB acoustic signature

Final results and complementary / sub-group analyses to come



Discussion

Acoustic epidemiology is an emerging field of research

There are multiple potential niches for digital cough monitoring in TB control and respiratory medicine

Results from cough detection studies suggest that TB treatment clinical response can be objectively measured
Technological improvements are needed to facilitate unobtrusive longitudinal monitoring

Specific thresholds / patterns suggesting clinically relevant events (e.g. treatment failure) need to be identified and validated

Results from cough classification studies suggest the existence of an acoustic signature for pulmonary TB
Existing classification models can be further improved
Existing classification models could be combined with other biomarkers

The impact of cough classification for TB triage needs to be modeled and prospectively validated
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