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Background

Transmission of infectious pathogens is heterogenous.
+ Small proportion of hosts contribute to large proportion of transmission.
+ 20/80 rule, where 20% cases cause 80% of transmission, has been observed
across many infectious diseases.
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Background

Transmission of infectious pathogens is heterogenous.
+ Small proportion of hosts contribute to large proportion of transmission.
+ 20/80 rule, where 20% cases cause 80% of transmission, has been observed
across many infectious diseases.
+ Similar heterogeneity has been observed in tuberculosis transmission
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Background

Understanding heterogeneity in transmission can:
+ Help identify sources/settings where transmission risks are

higher.
+ Prioritize communities/settings/risk-factors, and potentially

address disparities.
+ Devote resources where most needed and help make TB-

control most cost effective.



Background

Understanding heterogeneity in transmission can:

+ Help identify sources/settings where transmission risks are
higher.

+ Prioritize communities/settings/risk-factors, and potentially

address disparities.
+ Devote resources where most needed and help make TB-

control most cost effective.

We analyze transmission data from the United
States (and key states, CA, FL, NY, and TX)

+ Develop and fit mechanistic transmission models (branching
process) to transmission clusters in the US.

+ Estimate transmission parameters (e.g., Ry) and
heterogeneity.

+ Compare key states.

+ Explore factors that affect these estimates.



Genotype cluster size distribution of TB cases in the US

Reference data
A Cluster distribution with cases within state, between 2012-2016
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Transmission links based on genotyping, i.e., matching isolates on the basis of
spacer oligonucleotide typing (spoligotype) and 24-locus mycobacterial
interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTR)



Branching Process Models

Branching process models capture transmission dynamics

Gen 1:

Compared to other kinds of transmission models (e.g., compartmental, individual
based) branching process models:
- Focus on capturing transmission chains through several generations



Branching Process Models

Branching process models capture transmission dynamics

Gen 1:

Compared to other kinds of transmission models (e.g., compartmental, individual
based) branching process models:
- Focus on capturing transmission chains through several generations
- Allow incorporating of heterogeneity at the individual level
- Have been used in the context of transmission of a range of infectious diseases
including TB (Farrington et al, 2003; Lloyd-Smith et al, 2005; Ypma et al, 2013)



Branching Process Models
Gen 1:

Incorporate individual-level heterogeneity.

Model 1: Homogenous model with no individual level variation

Model 2: SIR-type model (Standard compartmental transmission model)
Model 3: Overdispersed model (Ypma et al, 2013)
Model 4: Long-tailed model (Poisson lognormal)

Use likelihood-based framework to evaluate the fit of the models.



Model comparison

distributed (allowing for
even larger heterogeneity).

u,0% are, respectively, mean

variance of the underlying
normal distribution;

Ro [1+Ro (exp(c?) —1)]

Models Model description Underlying distribution of Maximum Relative
individual reproductive likelihood likelihood
number, v; estimate, MLE, log § compared
the resulting distribution of scaled (difference to the
secondary cases, Z; in log likelihood best
variance of Z units relative to model **

the highest
estimate)

Model I: Assumes no individual-level Vv is constant; -16,787.68 <1/1000

Homogeneous heterogeneity, i.e., all Z ~ Poisson(Ry); (-1,450.19)

model* individuals have the R,

reproductive number.
Model II: SIR-type | Reflecting assumption in v is exponentially distributed; -17,804.98 <1/1000
model* standard SIR-type Z ~ geometric(R,); (-2,468.19)
compartmental models, R,(1+ R,
assumes exponentially
distributed individual
reproductive numbers.

Model Ill: Assumes that the number of | v is gamma distributed; -15,507.78 < 1/1000

Overdispersed secondary cases from an Z~negative binomial(Ry, k) (-170.99)

model individual are over k is the dispersion parameter,

dispersed, and the degree of | smaller values relate to larger
overdispersion is estimated. | heterogeneity;
R,

Model IV: Long- Assumes that individual-level | v is lognormally distributed; -15,336.79 —

tailed model heterogeneity is lognormally | Z ~ Poisson lognormal(y, 0'2) (Ref)




Fitting branching process models to cluster distributions.
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« SIR-type, homogeneous, and over-dispersed model fail to capture the “long tail” in the

cluster distribution

« Long-tailed model captures the frequency of large clusters, and is statistically a better fit



Underlying individual-level heterogeneity

Probability density function

Mean Ry = 0.29
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« Underlying individual-level R, distribution, corresponding to best fit Long-tailed
model



Underlying individual-level heterogeneity
Mean R, = 0.29

\ 95% of individuals with R, < 1
contributes to 38% of secondary cases
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« Underlying individual-level R, distribution, corresponding to best fit long-tailed

model shows:

* Low transmission rate: mean R, = 0.29

 |Incredible heterogeneity: 95% of individuals have R, < 1 and contribute to only 38% of secondary
cases, but very few individuals with high R, (contribute substantially).



State-level differences across CA, FL, NY and TX
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- Fit to state-level data in four states (2014-2016)
- Long-tailed models are better fits to the data.



State-level differences across CA, FL, NY and TX
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Comparing inferences under different cluster definitions
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Inference of R, are sensitive to cluster definition.
- More sensitive to using a cluster definition consisting of state vs. county, compared
to using 3-year vs. 5-year.



Model for under and over ascertainment

Cluster with Cluster with
underreporting/ True Cluster importation and
under ascertainment over ascertainment




Simulation Study for Sensitivity of Model-based inference

Simulate cluster distributions
using branching process models
(true parameters)

|

Generate “observed” cluster distributions
By filtering with under/over ascertainment

Compare true and
estimated parameters

Estimate parameters using “observed” distributions
and our fitting procedure
(estimated parameters)



Sensitivity of model inference
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Sensitivity of model inference
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Summary

Estimated transmission rates in the United States were low.

R, estimates similar to other low burden countries (UK: 0.41; Netherlands: 0.24; Brooks-Pollock
et al, 2020)

Transmission highly heterogeneous.
Degree of heterogeneity better captured by long-tailed distribution (Brooks-Pollock et al, 2020)
Most simulated cases (95%) had individual reproductive number < 1
Very few cases (0.24%) contributed to 19% of secondary cases of recent transmission

Transmission varied across states.
R, estimates were twice as large in Texas compared to New York

Definition of genotype cluster, and imperfection in cluster ascertainment affected

estimates of R,

More conservative definitions of cluster resulted in smaller estimates of R,
The effect on heterogeneity estimates were generally smaller



Limitations and next steps

- Conventional genotyping can be prone to both under and over ascertainment
Underreporting/missing cases, lack of specimen culture, left/right censoring —> Under

ascertainment

Transmission in past from an endemic strain, importation, detection of deeper ancestry —> False
attribution or over ascertainment (~60% confirmed via WGS)

Can vary between Mtb strains (differences in diversity)

- State-level differences could be driven by other factors

Difference in circulating strains
Demography and size of state and counties

- Estimated individual-level heterogeneity are not entirely individual-specific
Societal, environmental, pathogen-specific, TB-program related factors can drive heterogeneity.
Understanding the drivers can help prioritize programs/interventions.
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The Netherlands and the UK

Poisson lognormal
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Data source: Brooks-Pollock et. al., 2020
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