

Heterogeneity in *M. tuberculosis* transmission in the United States.

Sourya Shrestha
sourya@jhu.edu
Dept of Epidemiology,
Johns Hopkins School of Public Health

27th Annual Conference, Union-NAR, Vancouver Feb 25, 2023

Collaboration:

US CDC/DTBE:

- Andrew Hill, Suzanne Marks
- Kathryn Winglee, Steve Kammerer, Ben Silk

Yale University:

Jonathan Smith

California Dept of Public Health:

Tambi Shaw

Johns Hopkins:

David Dowdy

Funding:

This project was funded by the CDC National Center for HIV, Viral Hepatitis, STD, and TB Prevention Epidemiologic and Economic Modeling Agreement (NEEMA 2.0).

Disclaimer: The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the CDC, CDPH or other authors' affiliated institutions.

Transmission of infectious pathogens is heterogenous.

- + Small proportion of hosts contribute to large proportion of transmission.
- + 20/80 rule, where 20% cases cause 80% of transmission, has been observed across many infectious diseases.

Transmission of infectious pathogens is heterogenous.

- + Small proportion of hosts contribute to large proportion of transmission.
- + 20/80 rule, where 20% cases cause 80% of transmission, has been observed across many infectious diseases.
- + Similar heterogeneity has been observed in tuberculosis transmission

Based on TB cases diagnosed between 1993-2007 in the Netherlands (8,330 cases with RFLP)

Understanding heterogeneity in transmission can:

- + Help identify sources/settings where transmission risks are higher.
- + Prioritize communities/settings/risk-factors, and potentially address disparities.
- + Devote resources where most needed and help make TB-control most cost effective.

Understanding heterogeneity in transmission can:

- Help identify sources/settings where transmission risks are higher.
- + Prioritize communities/settings/risk-factors, and potentially address disparities.
- Devote resources where most needed and help make TBcontrol most cost effective.

We analyze transmission data from the United States (and key states, CA, FL, NY, and TX)

- Develop and fit mechanistic transmission models (branching process) to transmission clusters in the US.
- + Estimate transmission parameters (e.g., R₀) and heterogeneity.
- + Compare key states.
- + Explore factors that affect these estimates.

Genotype cluster size distribution of TB cases in the US

Transmission links based on genotyping, i.e., matching isolates on the basis of spacer oligonucleotide typing (spoligotype) and 24-locus mycobacterial interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTR)

Branching Process Models

Branching process models capture transmission dynamics

Compared to other kinds of transmission models (e.g., compartmental, individual based) branching process models:

Focus on capturing transmission chains through several generations

Branching Process Models

Branching process models capture transmission dynamics

Compared to other kinds of transmission models (e.g., compartmental, individual based) branching process models:

- Focus on capturing transmission chains through several generations
- Allow incorporating of heterogeneity at the individual level
- Have been used in the context of transmission of a range of infectious diseases including TB (Farrington et al, 2003; Lloyd-Smith et al, 2005; Ypma et al, 2013)

Branching Process Models

Incorporate individual-level heterogeneity.

- Model 1: Homogenous model with no individual level variation
- Model 2: SIR-type model (Standard compartmental transmission model)
- Model 3: Overdispersed model (Ypma et al, 2013)
- Model 4: Long-tailed model (Poisson lognormal)

Use likelihood-based framework to evaluate the fit of the models.

Model comparison

Models	Model description	Underlying distribution of	Maximum	Relative
		individual reproductive	likelihood	likelihood
		number, v;	estimate, MLE, log	compared
		the resulting distribution of	scaled (difference	to the
		secondary cases, Z ;	in log likelihood	best
		variance of Z	units relative to	model **
			the highest	
			estimate)	
Model I:	Assumes no individual-level	ν is constant;	-16,787.68	< 1/1000
Homogeneous	heterogeneity, i.e., all	$Z \sim \text{Poisson}(R_0);$	(-1,450.19)	
model*	individuals have the	R_0		
	reproductive number.	O O		
Model II: SIR-type	Reflecting assumption in	ν is exponentially distributed;	-17,804.98	< 1/1000
model*	standard SIR-type	$Z \sim \text{geometric}(R_0);$	(-2,468.19)	
	compartmental models,	$R_0(1+R_0)$, , , ,	
	assumes exponentially	0(- :0)		
	distributed individual			
	reproductive numbers.			
	·			
Model III:	Assumes that the number of	ν is gamma distributed;	-15,507.78	< 1/1000
Overdispersed	secondary cases from an	$Z\sim$ negative binomial (R_0,k)	(-170.99)	
model	individual are over	k is the dispersion parameter,		
	dispersed, and the degree of	smaller values relate to larger		
	overdispersion is estimated.	heterogeneity;		
		R_0		
		$R_0(1+\frac{\kappa_0}{k})$		
Model IV: Long-	Assumes that individual-level	ν is lognormally distributed;	-15,336.79	_
tailed model	heterogeneity is lognormally	$Z \sim \text{Poisson lognormal}(\mu, \sigma^2)$	(Ref)	
	distributed (allowing for	μ, σ^2 are, respectively, mean		
	even larger heterogeneity).	variance of the underlying		
		normal distribution;		
		$R_0 [1 + R_0 (exp(\sigma^2) - 1)]$		

Fitting branching process models to cluster distributions.

- SIR-type, homogeneous, and over-dispersed model fail to capture the "long tail" in the cluster distribution
- Long-tailed model captures the frequency of large clusters, and is statistically a better fit

Underlying individual-level heterogeneity

 Underlying individual-level R₀ distribution, corresponding to best fit Long-tailed model

Underlying individual-level heterogeneity

- Underlying individual-level R₀ distribution, corresponding to best fit long-tailed model shows:
 - Low transmission rate: mean $R_0 = 0.29$
 - Incredible heterogeneity: 95% of individuals have R_0 < 1 and contribute to only 38% of secondary cases, but very few individuals with high R_0 (contribute substantially).

State-level differences across CA, FL, NY and TX

- Fit to state-level data in four states (2014-2016)
- Long-tailed models are better fits to the data.

State-level differences across CA, FL, NY and TX

Substantial variation in estimated R₀ and heterogeneity across states.

Comparing inferences under different cluster definitions

Inference of R₀ are sensitive to cluster definition.

 More sensitive to using a cluster definition consisting of state vs. county, compared to using 3-year vs. 5-year.

Model for under and over ascertainment

Simulation Study for Sensitivity of Model-based inference

Sensitivity of model inference

Sensitivity of model inference

- Estimates of R₀ sensitive to ascertainment, but in a predictable manner.
- Estimated heterogeneity didn't appear to be very sensitive.

Summary

- Estimated transmission rates in the United States were low.
 - R₀ estimates similar to other low burden countries (UK: 0.41; Netherlands: 0.24; Brooks-Pollock et al, 2020)
- Transmission highly heterogeneous.
 - Degree of heterogeneity better captured by long-tailed distribution (Brooks-Pollock et al, 2020)
 - Most simulated cases (95%) had individual reproductive number < 1
 - Very few cases (0.24%) contributed to 19% of secondary cases of recent transmission
- Transmission varied across states.
 - R₀ estimates were twice as large in Texas compared to New York
- Definition of genotype cluster, and imperfection in cluster ascertainment affected estimates of R₀
 - More conservative definitions of cluster resulted in smaller estimates of R₀
 - · The effect on heterogeneity estimates were generally smaller

Limitations and next steps

- Conventional genotyping can be prone to both under and over ascertainment
 - Underreporting/missing cases, lack of specimen culture, left/right censoring —> Under ascertainment
 - Transmission in past from an endemic strain, importation, detection of deeper ancestry —> False attribution or over ascertainment (~60% confirmed via WGS)
 - Can vary between Mtb strains (differences in diversity)
- State-level differences could be driven by other factors
 - Difference in circulating strains
 - Demography and size of state and counties
- Estimated individual-level heterogeneity are not entirely individual-specific
 - · Societal, environmental, pathogen-specific, TB-program related factors can drive heterogeneity.
 - Understanding the drivers can help prioritize programs/interventions.

Thank you!

Clinical Infectious Diseases

MAJOR ARTICLE

Model-based Analysis of Tuberculosis Genotype Clusters in the United States Reveals High Degree of Heterogeneity in Transmission and State-level Differences Across California, Florida, New York, and Texas

The Netherlands and the UK

Data source: Brooks-Pollock et. al., 2020