Incorporation of clinical factors to improve the diagnostic accuracy of artificial intelligence-based chest X-ray analysis for detecting pulmonary tuberculosis

Coralie Geric, MScPH

PhD student, Division of Experimental Medicine, McGill University

Background

- For over a century, chest radiography (CXR) has been an essential tool in TB diagnosis, clinical care & follow-up
 - Interpretation is subjective and humans dichotomize interpretations to classify CXR as normal vs abnormal, with abnormalities consistent with TB or not
- Advances in artificial intelligence-based CXR analysis (or CAD) allows for objective, quantitative measurements of the degree of abnormality
- Commercial CAD output a continuous score on a 100-point scale
 - Higher scores = increased likelihood of TB
- However, humans have been applying cut-off values to interpret CXR as usual (normal vs abnormal)

Background – threshold scores

- Cut-off values are referred to as threshold scores.
- Example:
 - \circ CAD score ≥ 30 \rightarrow CXR consistent with TB
 - \circ CAD score < 30 \rightarrow CXR **not** consistent with TB

Disadvantages:

- Sensitivity & specificity of a given threshold score are affected by clinical variables
 - Age, sex, HIV, and prior TB
- It is recommended that users perform accuracy studies to identify thresholds in their population

Objectives

- Can we make better use of CAD abnormality scores?
- We sought to:
 - 1. create a clinical model that uses continuous CAD scores and incorporates clinical data to estimate the predicted probability of pulmonary TB
 - compare the clinical model vs using the CAD score alone for the diagnosis of culture or PCR confirmed pulmonary TB

Methods

- Developed a clinical model using logistic regression
 - Outcome = TB
 - Predictors = clinical variables (age, sex, HIV, prior TB)
- Used individual patient data from three studies in Pakistan, Zambia, and Tanzania
- CXR analyzed using two commercially available CAD
 - CAD4TB v6 (Delft Imaging, Netherlands) & qXR v2 (qure.ai, India)

Methods

- First, we asked does adding clinical data improve discrimination, compared to using CAD alone
 - Compared ROC curves of CAD alone vs CAD + clinical variables
 - Internally validated the clinical model using bootstrap validation
- Next, we compared the accuracy of differentiating between participants with & without TB when using CAD alone vs the clinical model
 - Used predication probabilities that achieved pre-specified sensitivities, and calculated the corresponding specificity, positive predictive value & negative predictive value
- Each of the above was performed separately for each software

Results

Table 1. Characteristics of 3308 included participants

Characteristic	Overall (N=3308)	Pakistan (N=2283)	Tanzania (N=708)	Zambia (N=317)
Age, median (IQR)	35 (25, 48)	33 (23, 49)	38 (31, 50)	35 (28, 43)
Female, N(%)	1566 (47.3)	1091 (47.8)	352 (49.7)	123 (38.8)
HIV-positive	492 (14.9)	3 (0.1)	308 (43.5)	181 (57.1)
Previous TB, N(%)	704 (21.3)	517 (22.6)	111 (15.7)	76 (24.0)
NAAT or culture positive for <i>MTB</i>	566 (17.1)	292 (12.8)	187 (26.4)	87 (27.4)
Smear-positive	420 (12.7)	221 (9.7)	141 (19.9)	58 (18.3)

→ Those with TB were less likely to have a history of TB (13.6% vs 22.9%, p<0.001) and more likely HIV-positive (24.4% vs 12.9%, p<0.001)

Specificity of CAD alone vs CAD + clinical data

Example

- To achieve a sensitivity of 0.90, the cut-off values were:
 - CAD alone → CAD score ≥ 55
 - CAD + clinical data → predicted probability ≥ 9.5%
- Participant was 55 years old, female, HIV-negative, and had a history of TB and a CAD score of 63
- CAD alone:
 - \circ CAD score = 63 ≥ 55 \rightarrow consistent with TB
- CAD + clinical data:
 - ∘ predicted probability = 1.6% < 9.5% → **not** consistent with TB
- TB ruled out by two negative cultures & negative NAAT

Strengths & limitations

Strengths:

- Used individual patient data from multiple sites and countries, enhancing generalizability
- High quality of studies & use of a microbiological reference standard likely reduced bias
- Completed independently of CAD developers

Limitations:

- Internal validation only, limiting generalizability
- Did not account for potential random effects from different sites

Conclusions & future directions

- Estimating the probability of TB using a model with continuous CAD scores and clinical data was more accurate at classifying individuals with TB symptoms than using the CAD score alone
- Having increased specificity, the clinical model could reduce the number of TB tests performed unnecessarily, without compromising the detection of people with TB

- Future directions:
 - External validation
 - Develop a point-based risk score system
 - Enhance model by incorporating additional clinical data

Acknowledgments

Co-investigators

- Gamuchirai Tavaziva
- Dr. Marianne Breuninger
- Dr. Keertan Dheda
- Dr. Ali Esmail
- Dr. Monde Muyoyeta
- Dr. Klaus Reither
- Dr. Aamir J Khan
- Dr. Andrea Benedetti
- Dr. Faiz Ahmad Khan

Fonds de recherche — Nature et technologies Fonds de recherche — Santé Fonds de recherche — Société et culture

