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Goal of Exposure Assessments

* Retrospective: Who was exposed?

(For how long? How much?)

- Link exposure to other specific outcomes (health effects)
* Prospective: Who is at risk for exposure?

- Reduce exposure

- Provide /prepare resources



Assessing population exposure to wildfire
smoke is challenging

* Smoke concentrations are highly
variable, in both space and time

* Smoke can travel long distances;
exposure can occur far from the source
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*using HMS products

Thus, a good exposure assessment requires tools with high resolution
(spatial and temporal) and broad spatial coverage




Outline

* The ideal dataset for exposure assessment

e Conventional methods
* And blended datasets
* Forecast models

* Unconventional methods (crowd-sourcing/social media)

* New technologies: new satellites, low-cost sensors



The ideal dataset for exposure assessment

Wearing personal
Large group of people monitors

¥ 3

Charting personal
history, symptoms,
activities, and behaviors

And giving us access
to all their health
records

Credit A. Birch

* Individual exposures within a population
* Little to no assumptions, more clearly determine cause and effect



Instead, we generally try to determine

population-level exposure

(exposure where people live or access healthcare)
-106 -104

10 pug m-3
50 ug m-3

: | TS
0.10 1.00 10.00  100.00  1000.00  10000.00  people/km’



Conventional Methods: 3 main tools

Ground Monitors Atmospheric Models
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Each tool has its strengths and its limitations
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(1) Ground/Surface Monitors

* Measuring Particle Mass (PM, ; or PM,)

* Also, visual range (VR), extinction or AOD

* Pros: Provide actual (or inferred) concentration at surface, where people
breathe

* Cons: Limited in spatial extent, may be limited in temporal resolution
(depending on measurement method /instrument)

* Challenges: distinguishing impact of smoke on total concentration (vs. from
other sources)

* Methods: nearest monitor, interpolation, average over some geographical
area



Example of using surface measurements

* Example of surface measurements used to estimate exposure in NYC

B New York City

Daily Average PM. . Concentrations {pg/m?}
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and Boston for the 2002 Quebec fires
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Visual Range/Visibility

* Automated Surface Observing System (ASOS) at
airports!

* Can relate to an extinction coefficient or a surface
concentration (empirical relationship, IMPROVE
network)

* Impacted by relative humidity

* Human-sighted

* In regions with no surface monitors, can train citizens to
determine their own visual range to assess severity of
smoke?

* Does not correlate well with PM,, . concentrations

3

Horsetooth Reservoir, CO

'Delfino et al., 2009 /Wu et al., 2006
20’Neill et al., 2013

3Schichtel and Husar, 1999
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(2) Models

* Multiple kinds: Process-based (dispersion models,
chemical transport models) or empirical models

* Process-based: combines fire information (location and emissions)
with meteorological information to simulate smoke transport

* Pro: Can provide excellent temporal and spatial coverage
* Pro: Can separate impact of smoke on concentrations

* Con: concentrations might not be right (very dependent on input
meteorology and emissions- specifically, injection height!)

11



Examples using models to estimate smoke

exposure

* National estimates (CMAQ) for smoke in
the US'
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Smoke Forecast Models are used for both
retrospective and prospective exposure assessments

@ 9am Tuesday Forecast

* Blue Sky'
NOAA Smoke?
NAAPS3

* FireWork*
HRRR-Smoke

* Dispersion models tend to overpredict near sources and underpredict
downwind

* Better on short timescales, because forecasting fire behavior (and response)
is challenging

* Data fusion and data assimilation can improve smoke forecasts substantially

"Yuchi et al., 2016; 2Rappold et al., 2012; 3Faustini et al., 2015; “Yuchi et al., 2016 13



(3) Satellites

* Polar-orbiting vs. geostationary satellites

* Active vs. passive instruments

* Can provide good spatial coverage
* May be limited spatial resolution

* May be limited in temporal coverage
* Passive instruments are limited to daytime observations

* Difficult to distinguish smoke from clouds

* Give spatial extent, but not surface concentration
(smoke can be elevated above the surface)

14



Satellite Instruments and Products

HMS 7 July 2015 ,
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Examples using satellite observations

* HMS smoke plumes for California * AOD for North Carolina peat bog
firesin 2015 fires in 20082

Northeast Plateau

‘® San Diego

"Wettstein et al., 2018; ?Rappold et al., 2011 16



Blended Methods

* Researchers seek to overcome limitations of individual tools by
combining them

* Can combine other data as well (fire activity, weather)

* Statistical combination or simply a corroboration of a different
exposure methods

PM, c [ugm-3] | Smoke location
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O'Dell et al., 2019
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Examples of Blended Methods

* Empirical relationships between surface
PM, MODIS AOD, HMS, MODIS Fire

Radiative Power (FRP), etc.' S

* Machine-learning?

Surface PM, ; Measurements  WRF-Chem Simulated PM,; MODIS AOD

Lassman et al., 2017

2 Reid et al., 2015

18



“Satellite-derived” PM,, ,

* Combines satellite AOD with a modeled relationship between PM and
AOD (done for total PM, < or sources/aerosol species)

* Example: Moscow wildfires of 2010
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'van Donkelaar et al., 2011
*Similar method used to estimate the global mortality burden of landscape fires in Johnston et al., 2012 19



Unconventional Methods:
Crowd-sourcing/social media

Our Reasoning:

* Can’t people just tell us when they were exposed?!

* Can provide geographic information and potentially sentiments
and health response



Social Media Examples

* Twitter activity from the * Facebook posts for the 2015 wildfires
California King Fire in the western US

100- % of Facebook posts using
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AirRater mobile application in Tasmania
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EPA’'s Smoke Sense

* Mobile application citizen
science project

Smoke Sense

In weeks with a smoke event:
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New technologies

* Designed specifically to address many of the limitations of these
conventional methods for measuring air quality

* Human health and exposure assessment commonly used in justification

* Often mention wildfire smoke specifically

* Very expensive: satellites vs. very inexpensive: low-cost sensors

* Both create a massive amount of data to store and analyze



Low-cost sensors

* Goal is to provide high density of PM
monitors

* Easy mobile application integration

* Cons: Often have high uncertainty and
lack a vigorous validation process

* AQ-SPEC (http://www.agmd.gov/ag-
spec/evaluations)

* Potential to create correction factors or (b)

algorithms to correct bias

* Could provide exposure estimates for
areas without standard surface monitors

PM_ (ugm™) :(PA-FEM)

25

20 30 40 50
PM, (ngm™) :FEM
' (Gupta et al., 2018)
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Aerosol Mass and Optical Depth
(AMOD) Sampler (developed at CSU)

* Real-time PM, ; Sensor, Filter Measurement, and AOD
at 4 wavelengths

Aerosol Optical Depth
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New Satellites for Air Quality

* New generation of GOES satellites



Concluding Thoughts

* There are many methods and tools that are used for exposure assessments;
no consensus on the best method or tool

* But blended methods seem to produce the best estimates

* Studies that have tested multiple exposure estimates show they lead to
different health effect estimates (Gan et al,, 2017; Yuchi et al., 2016)

* New technologies are promising, specifically for real-time monitoring
(will also improve forecasts)

* Need more work on integrating these datasets into mobile and web
applications to provide information to the public in an easy to use format



