Population Exposure Assessment for Wildfire Smoke

Bonne Ford

Department of Atmospheric Science

Colorado State University

Fort Collins, CO

Goal of Exposure Assessments

• **Retrospective:** Who was exposed?

(For how long? How much?)

- Link exposure to other specific outcomes (health effects)
- **Prospective:** Who is at risk for exposure?
 - Reduce exposure
 - Provide/prepare resources

Assessing population exposure to wildfire smoke is challenging

- Smoke can travel long distances; exposure can occur far from the source
- Smoke concentrations are highly variable, in both space and time

Thus, a good exposure assessment requires tools with high resolution (spatial and temporal) and broad spatial coverage

Outline

- The ideal dataset for exposure assessment
- Conventional methods
 - And blended datasets
 - Forecast models
- Unconventional methods (crowd-sourcing/social media)
- New technologies: new satellites, low-cost sensors

The ideal dataset for exposure assessment

Wearing personal monitors

Credit A. Birch

Charting personal history, symptoms, activities, and behaviors

And giving us access to all their health records

- Individual exposures within a population
- Little to no assumptions, more clearly determine cause and effect

Instead, we generally try to determine population-level exposure

(exposure where people live or access healthcare)

Conventional Methods: 3 main tools

Satellite Observations

MODIS True Color 30 June 2015

Each tool has its strengths and its limitations

(1) Ground/Surface Monitors

- Measuring Particle Mass (PM_{2.5} or PM₁₀)
 - Also, visual range (VR), extinction or AOD

- Pros: Provide actual (or inferred) concentration at surface, where people breathe
- Cons: Limited in spatial extent, may be limited in temporal resolution (depending on measurement method/instrument)
- Challenges: distinguishing impact of smoke on total concentration (vs. from other sources)
- Methods: nearest monitor, interpolation, average over some geographical area

Example of using surface measurements

• Example of surface measurements used to estimate exposure in NYC and Boston for the 2002 Quebec fires

Zhu et al. 2016

Visual Range/Visibility

- Automated Surface Observing System (ASOS) at airports¹
- Can relate to an extinction coefficient or a surface concentration (empirical relationship, IMPROVE network)
 - Impacted by relative humidity
- Human-sighted
 - In regions with no surface monitors, can train citizens to determine their own visual range to assess severity of smoke²
 - Does not correlate well with PM_{2.5} concentrations³

Horsetooth Reservoir, CO

¹Delfino et al., 2009/Wu et al., 2006 ²O'Neill et al., 2013 ³Schichtel and Husar, 1999

• Multiple kinds: Process-based (dispersion models, chemical transport models) or empirical models

(2) Models

- Process-based: combines fire information (location and emissions) with meteorological information to simulate smoke transport
- Pro: Can provide excellent temporal and spatial coverage
- Pro: Can separate impact of smoke on concentrations
- Con: concentrations might not be right (very dependent on input meteorology and emissions- specifically, injection height!)

Examples using models to estimate smoke exposure

 National estimates (CMAQ) for smoke in the US¹

- Land and atmosphere model (CESM) to predict future smoke exposure in the US²

 WRF-Chem simulations of wildfires in Colorado 2012³

Smoke Forecast Models are used for both retrospective and prospective exposure assessments

- Blue Sky¹
- NOAA Smoke²
- NAAPS³
- FireWork⁴
- HRRR-Smoke

- Dispersion models tend to overpredict near sources and underpredict downwind
- Better on short timescales, because forecasting fire behavior (and response) is challenging
- Data fusion and data assimilation can improve smoke forecasts substantially

(3) Satellites

- Polar-orbiting vs. geostationary satellites
- Active vs. passive instruments
- Can provide good spatial coverage
 - May be limited spatial resolution
- May be limited in temporal coverage
 - Passive instruments are limited to daytime observations
- Difficult to distinguish smoke from clouds
- Give spatial extent, but not surface concentration (smoke can be elevated above the surface)

Satellite Instruments and Products

- Smoke Plumes from NOAA's Hazard Mapping System
- Aerosol Optical Depth (AOD)
 MODIS Aqua and Terra, MISR, GASP
- Extinction Profiles
 - CALIPSO
- Plume Heights
 - MISR

Examples using satellite observations

• HMS smoke plumes for California fires in 2015¹

 AOD for North Carolina peat bog fires in 2008²

¹Wettstein et al., 2018; ²Rappold et al., 2011

Blended Methods

- Researchers seek to overcome limitations of individual tools by combining them
- Can combine other data as well (fire activity, weather)
- Statistical combination or simply a corroboration of a different exposure methods

Examples of Blended Methods

- Empirical relationships between surface PM, MODIS AOD, HMS, MODIS Fire Radiative Power (FRP), etc.¹
- Machine-learning²

Lassman et al., 2017

² Reid et al., 2015

"Satellite-derived" PM_{2.5}

- Combines satellite AOD with a modeled relationship between PM and AOD (done for total $PM_{2.5}$ or sources/aerosol species)
- Example: Moscow wildfires of 2010¹

¹van Donkelaar et al., 2011

*Similar method used to estimate the global mortality burden of landscape fires in Johnston et al., 2012

Unconventional Methods: Crowd-sourcing/social media

Our Reasoning:

• Can't people just tell us when they were exposed?!

• Can provide geographic information and potentially sentiments and health response

Social Media Examples

 Twitter activity from the California King Fire

(Sachdeva et al., 2016)

• Facebook posts for the 2015 wildfires in the western US

AirRater mobile application in Tasmania

Individual

app users

Air quality

managers

Public health

managers

Fire

managers

Clinicians

Manage

• Integrated online platform that combines symptom surveillance, environmental monitoring, and notifications of changing environmental conditions

Johnston et al. 2018

Uses a network of air monitoring stations and satellite data

EPA's Smoke Sense

- Mobile application citizen science project
- Goals:
 - Understand the subclinical health impacts of wildland fire smoke
 - Discover how people protect their health during smoke exposure
 - Develop effective strategies to communicate health risks from smoke exposure

Smoke Sense

New technologies

- Designed specifically to address many of the limitations of these conventional methods for measuring air quality
- Human health and exposure assessment commonly used in justification
 - Often mention wildfire smoke specifically

- Very expensive: satellites vs. very inexpensive: low-cost sensors
 - Both create a massive amount of data to store and analyze

Low-cost sensors

- Goal is to provide high density of PM monitors
- Easy mobile application integration
- Cons: Often have high uncertainty and lack a vigorous validation process
 - AQ-SPEC (<u>http://www.aqmd.gov/aq-spec/evaluations</u>)
- Potential to create correction factors or algorithms to correct bias
- Could provide exposure estimates for areas without standard surface monitors

Aerosol Mass and Optical Depth (AMOD) Sampler (developed at CSU)

• Real-time PM_{2.5} Sensor, Filter Measurement, and AOD at 4 wavelengths

OAOD870 AOD680

AOD520 AOD440

New Satellites for Air Quality

- New generation of GOES satellites
 - •

Concluding Thoughts

- There are many methods and tools that are used for exposure assessments; no consensus on the best method or tool
- But blended methods seem to produce the best estimates
- Studies that have tested multiple exposure estimates show they lead to different health effect estimates (Gan et al., 2017; Yuchi et al., 2016)
- New technologies are promising, specifically for real-time monitoring (will also improve forecasts)
- Need more work on integrating these datasets into mobile and web applications to provide information to the public in an easy to use format