

Clinical trials: optimal use of new and existing medications

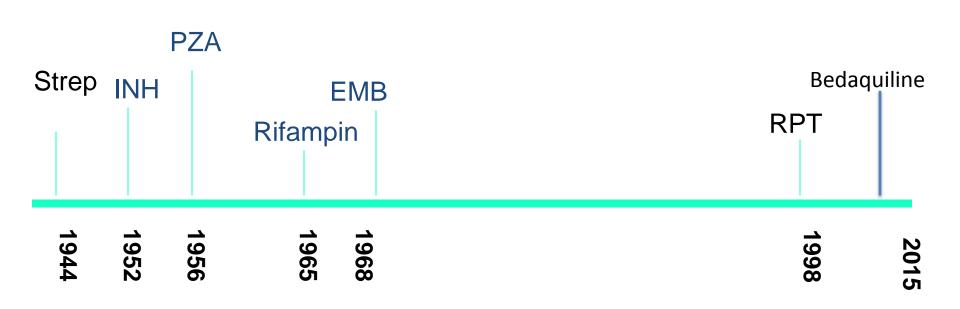
Bill Burman Denver Public Health

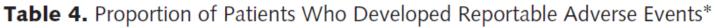
© 2014 Denver Public Health

Presenter disclosures

- Chair Data Safety and Monitoring Boards for TMC207 studies, ad hoc advisor for Tibotec for the development of bedaquiline
- Tibotec paid Denver Public Health for my time

Presenter disclosures


- Chair Data Safety and Monitoring Boards for TMC207 studies, ad hoc advisor for Tibotec for the development of bedaquiline
- Tibotec paid Denver Public Health for my time
- Recovering clinical trialist TBTC
- Now a public health bureaucrat



- High-level overview of clinical trials during the resurgence of TB trial activity
 - Successes
 - Lessons learned
- Key clinic questions that aren't being addressed in clinical trials

Tuberculosis drug development

Adverse Event	Rifampin and Pyrazinamide (n = 791)	Isoniazid (n = 792)	<i>P</i> Value
At least 1†	12.3	10.5	.27
At least 1 at grade 4 or higher	5.6	7.3	.18
Study drug permanently discontinued	9.5	6.1	.01
Abnormal liver function tests	1.4	3.3	.02
Hepatitis	0.8	0.4	.34
Peripheral neuropathy	0.1	0.5	.37
Skin rash	1.4	0.6	.14
Neutropenia	0.8	0.4	.34
Nausea and/or vomiting	1.9	0.1	<.001
Narcotic withdrawal	1.5	0.0	<.001

Gordin F, et al. JAMA 2000; 283:1445-50

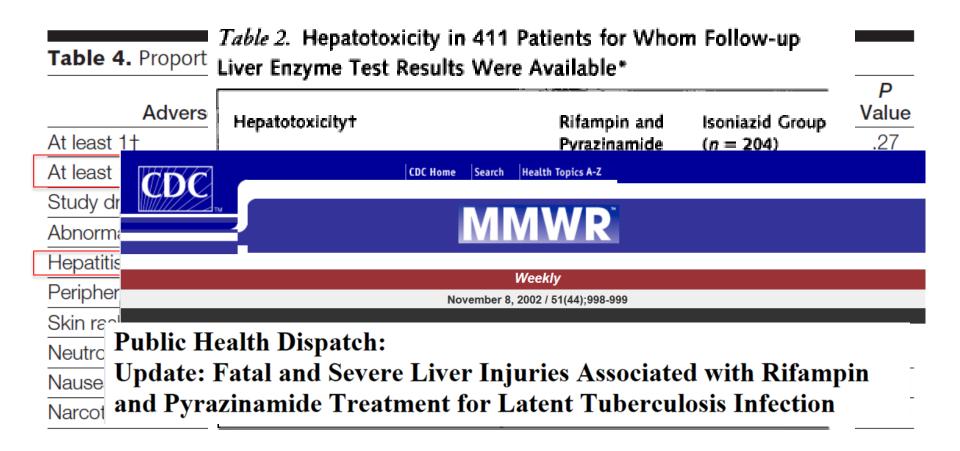
Treatment of LTBI – a mis-step, followed by DENVER HEALTH success

Table 4. Proport Liver Enzyme Test Results Were Available*					
Advers	Hepatotoxicity†	Rifampin and	Isoniazid Group		
At least 1†		Pyrazinamide	(<i>n</i> = 204)		
At least 1 at grade		Group			
Study drug permar		(n = 207)			
Abnormal liver func		n	(%)		
Llopotitio	Grade 1	29 (14)	27 (13 2)		

Table 2. Hepatotoxicity in 411 Patients for Whom Follow-up

At least 1 at grade		(n = 207)		_	.10
Study drug permar		(17 - 2077			.01
Abnormal liver func			n (%)		.02
Hepatitis	Grade 1	29 (14)	27 (13.2)	-	.34
Peripheral neuropa	Grade 2 Grade 3	9 (4.3) 7 (3.4)	3 (1.5)	-	.34 .37
Skin rash	Grade 4	9 (4.3)	0 (0) 2 (1.0)	-	.14
Neutropenia	Total	54 (26.1)	32 (15.7)		.34 <.001
Nausea and/or vor	Discontinuation of study medications			-	<.001
Narcotic withdrawa	owing to hepatotoxicity	12 (5.8)	2 (1.0)	-	<.001

Gordin F, et al. JAMA 2000; 283:1445-50 Jasmer R, et al. Ann Intern Med 2002; 137: 640-7


Denver Publ

P Value

.27

18

Treatment of LTBI – a mis-step, followed by Success

Gordin F, et al. JAMA 2000; 283:1445-50 Jasmer R, et al. Ann Intern Med 2002; 137: 640-7 Treatment of LTBI – a mis-step, followed by Success

- Lessons of RIF/PZA for latent TB treatment trials
 - Safety is paramount in the treatment of latent TB infection
 - Beware of homogeneity in clinical trial design evaluate safety in all major patient subgroups that will receive the intervention
 - Rare serious side effects may be missed in clinical trials – need "post-market surveillance"

Table 3. Safety End Points Among Children Who Received at Least 1 Dose of Study Medication

	Pa	tients, No. (%)		
Characteristic	lsoniazid (n = 493)	Rifapentine Plus Isoniazid (n = 539)	P Value ^a	Difference (95% CI) ^b
AEs attributed to treatment				
Grades 1 and 2	5 (1.0)	11 (2.0)	.21	-1.0 (-2.5 to 0.5)
Grade 3	1 (0.2)	3 (0.6)	.63	-0.4 (-1.1 to 0.4)
Grade 4	0	0	NA	NA
Grade 5, death	0	0	NA	NA
Serious AEs	0	0	NA	NA

TB outcomes

- 0 cases in RPT/INH arm
- 3 cases in INH arm

Villarino ME, et al. JAMA Pediatrics, on-line first

Table 3. Safety End Points Among Children Who Received at Least 1 Dose of Study Medication

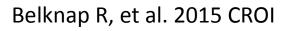
	Pa	tients, No. (%)		
Characteristic	lsoniazid (n = 493)	Rifapentine Plus Isoniazid (n = 539)	P Value ^a	Difference (95% CI) ^b
AEs attributed to treatment				
Grades 1 and 2	5 (1.0)	11 (2.0)	.21	-1.0 (-2.5 to 0.5)
Grade 3	1 (0.2)	3 (0.6)	.63	-0.4 (-1.1 to 0.4)
Grade 4	0	0	NA	NA
Grade 5, death	0	0	NA	NA
Serious AEs	0	0	NA	NA

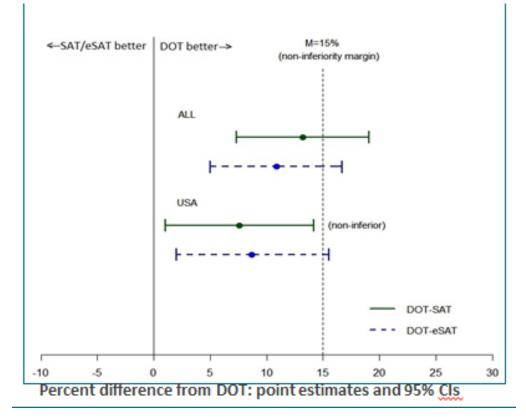
TB outcomes

- 0 cases in RPT/INH arm
- 3 cases in INH arm

Evaluation of safety and efficacy in patients with HIV – similar results (2 vs. 6 TB cases)

Villarino ME, et al. JAMA Pediatrics, on-line first Sterling T, et al. CROI 2014, abstract 817


Treatment of LTBI with RPT/INH: need for DOT



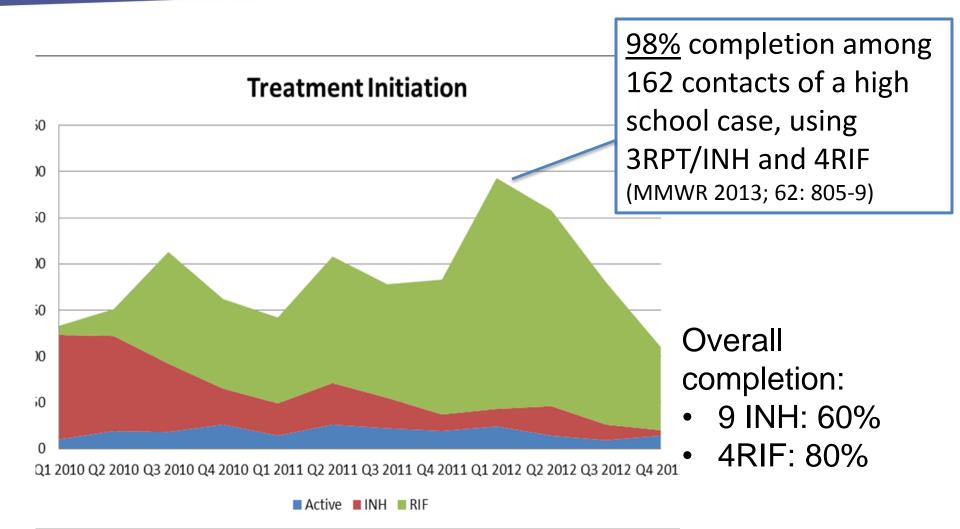
Randomized trial of RPT/INH: DOT, SAT, eSAT

Completion of therapy at US sites

- DOT 85%
- SAT 78%
- eSAT 76%

4 RIF vs. 9 INH

	4 Months of Rifampin $(n = 420), n (\%)$	9 Months of Isoniazid $(n = 427), n$ (%)
Drug-related adverse events subtotal	16 (3.8)	24 (5.7)
Grade 3 or 4 adverse events		
Subtotal	7 (1.7)	17 (4.0)
Hepatotoxicity	3 (0.7)	16 (3.8)
Hematologic	2 (0.5)	1 (0.2)
Drug interaction	1 (0.2)	0 (0)
Rash	1 (0.2)	0 (0)
Grade 1 or 2 adverse events		
Subtotal	9 (2.2)	7 (1.7)
Rash	8 (1.9)	5 (1.2)
Gastrointestinal intolerance	1 (0.2)	2 (0.5)


Menzies R, et al. Ann Intern Med 2008; 149: 694

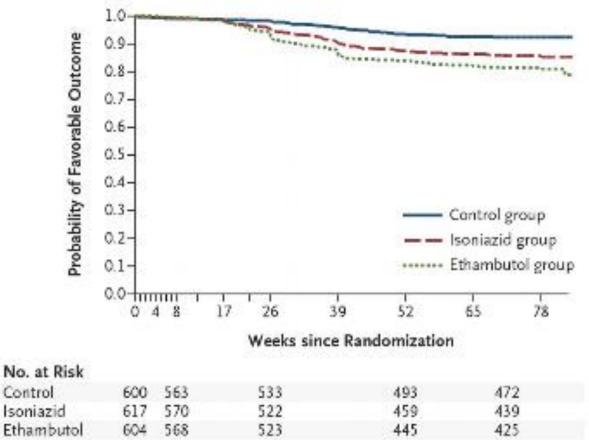
Overall trial progress

- Efficacy cohort (~ 6000) enrolled and in follow-up
- Parallel pediatric study enrolled and in follow-up

LTBI Treatment at the Denver TB Clinic

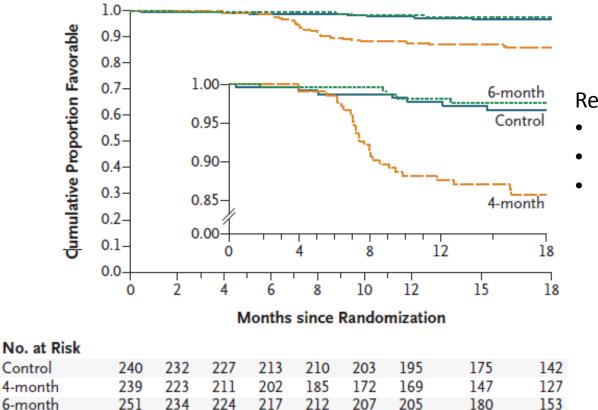
© 2014 Denver Public Health

Treatment of LTBI – current status



- Rifamycin-based regimens <u>solid progress</u> that helps programs (shorter, safer, better completion, trend toward greater efficacy)
 - Clinical trials completed in children, persons with HIV
- Post-marketing surveillance needed
 - Look for rare serious side effects from RPT, RIF
 - Risk of selection for RIF resistance in programmatic settings
- Trials in progress
 - Daily RPT/INH for 1 month (vs. INH)
 - Levo for contacts of MDR

Treatment-shortening using moxifloxacin for drug-susceptible active disease



Relapses

- IRZE 12 (2%)
- IRZ<u>M</u> 46 (9%)
- <u>M</u>RZE 64 (12%)

Gillespie S, et al. N Engl J Med 2014; 371: 1677-87

Treatment shortening with moxifloxacin and high-dose RPT

Relapses

- Control 4 (2%)
- 6 (weekly RPT/Moxi) 4 (2%)

NFR

27% HIV+ 65% cavitation

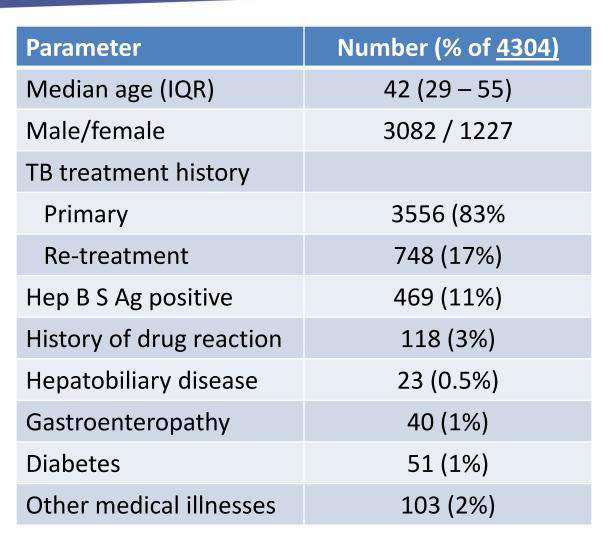
Jindani A, et al.New Engl J Med 2014; 371: 1599-608

TB clinical trials: drug-susceptible TB

- Summary
 - Moxi/gati do not allow meaningful treatmentshortening
 - Continuation-phase weekly moxi/RPT (1200 mg) not ready for prime time; more data needed on safety and efficacy
- Current generation of trials
 - High-dose RIF or RPT(with or without moxi) for treatment-shortening (to 4 months of daily therapy)

TB clinical trials: drug-susceptible TB

- Lessons from the past decade
 - Mouse model of TB treatment is not perfect, though still very useful
 - Don't start Phase 3 trials of treatment-shortening without compelling results from Phase 2
 - Increase in 2-month culture status from RIF 20%, from PZA 13%)
 - Regimens for drug-susceptible disease should be applicable to women of child-bearing age and children
 - Is treatment-shortening to 4 months "worth the squeeze", particularly if it requires daily dosing throughout?



- Cohort treated in the Denver Metro TB clinic, side effects from chart review
 - Any side effect 32%
 - Nausea 14%
 - Hepatitis 7%
 - Peripheral neuropathy 0.5%
- Multidrug therapy for drug-susceptible TB is not "well-tolerated"

- Multicenter prospective study 4 regions of China, sampling scheme to assure representative sample of patients with pulmonary TB
- Baseline survey and labs
- Treatment: IRZE for initial treatment, Strep added for re-treatment
- Symptom diary during treatment
- Repeat labs at 2 months
- Adverse events and TB treatment outcomes evaluated using standardized criteria

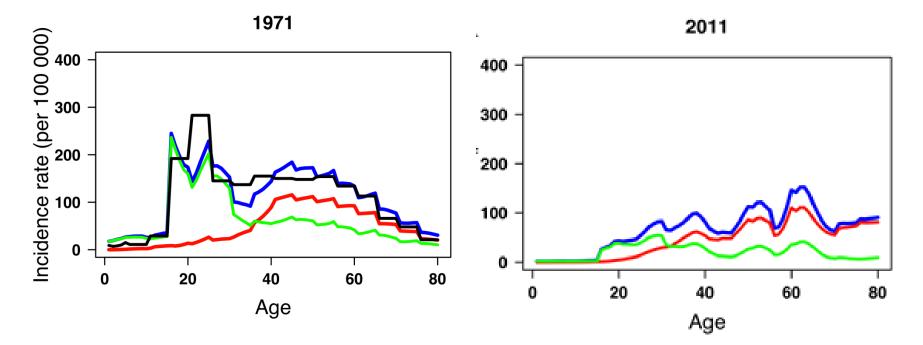
Demographic and clinical characteristics of the cohort

Lv Z, et al. PLoS One 2013

Adverse drug reactions

- Frequency
 - 766 (17%) had an adverse reaction, 1.4% had a serious adverse reaction, 1% hospitalized
 - Liver dysfunction 6.3%, 0.6% had serious hepatotoxicity
- Effect of TB treatment regimen
 - 43% of those with adverse reaction had regimen changed,
 5% stopped all TB treatment
- Effect on TB treatment outcomes
 - 2.8% with adverse reaction had unsuccessful TB treatment (vs. 1% of those without an adverse reaction)
 - 19% of all unsuccessful outcomes attributed to adverse reactions

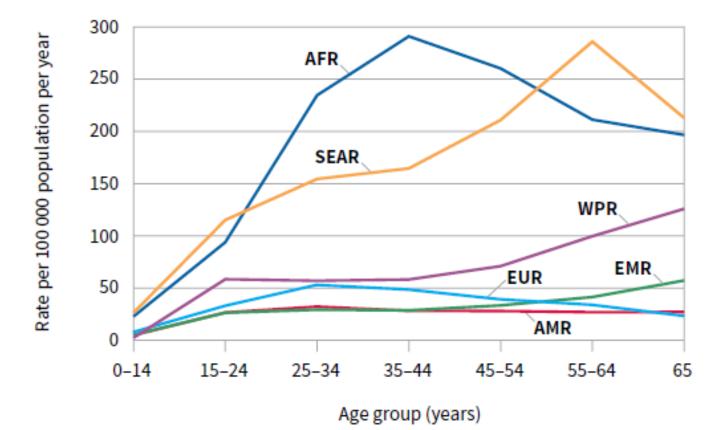
Comparison of hepatotoxicity risk among antimicrobial agents


Drug	Hepatotoxicity incidence per 100,000 courses	Comments
Amox-clav *	1-17	Generally benign
Telithromycin *	17	Withdrawn from the market
Levofloxacin *	0.02	
Trovofloxacin *	6	Withdrawn from the market
Rifampin	70	Annals Intern Med 2008; 149: 694
Isoniazid	380	Annals Intern Med 2008; 149: 694
Pyrazinamide	430	Ann Intern Med 2002; 137: 640-7

* Andrade R, Tulkens PM. J Antimicrob Chemother 2011; 66: 141-6

In population-based studies, TB drugs are among the most common causes of serious drug-related hepatotoxicity (Aliment Pharmacol Ther 2010;31:1200, Gastroenterol 2008;135:1924)

Changes in age-distribution among cases of active TB (Hong Kong)



As transmission decreases, active TB becomes increasingly a disease of the elderly

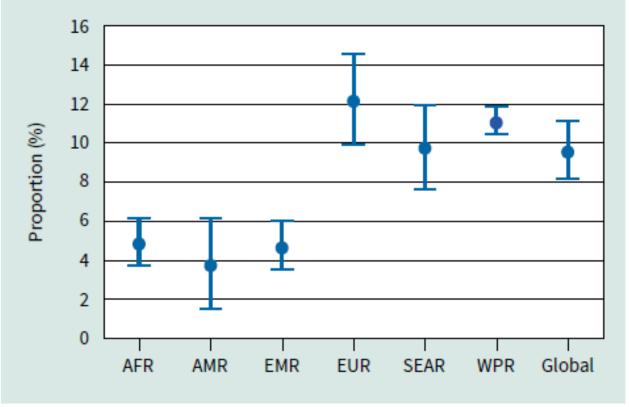
Wu P, et al. PLoS One, 2010

Regional TB notification rates by age, 2013^a

http://www.who.int/tb/publications/global_report/en/

Toxicity considerations in treatment of drug-susceptible disease

- INH and PZA are much more hepatotoxic than antibiotics that have been removed from the market
- Concerns about moxi safety in adults: 2-fold increased risk of CVD death (compared to amox/clav) in a recent large observational study (Clin Infect Dis 2015; 60: 566-77)
- The new norm of TB elderly, increased comorbid disease – who have higher risk of adverse effects, including hepatitis
- Encourage enrollment of elderly and "complicated patients" into TB clinical trials
- Is it time for trials comparing interventions for toxicity avoidance?



- 155 patients with INH-monoresistant isolates
 - 23% new cases, 75% prior TB treatment
 - 21% HIV-positive
- Treatment
 - 26% standard IRZE
 - 74% re-treatment regimen with high-dose INH
- Outcomes
 - 15% treatment failure 14/23 developed MDR
 - 16% defaulted

Prevalence of initial INH resistance, without RIF resistance

Proportion of all TB cases with resistance to isoniazid but without resistance to rifampicin by WHO region, 1994–2013

http://www.who.int/tb/publications/global_report/en/

Initial resistance	Failure *	Relapse *	Acquired resistance *
Susceptible	0.3%	3.7%	0.3%
INH	2.8%	11.4%	2.4%
INH/Strep	8.3%	10.1%	5.7%

* Pooled event rates from meta-analysis of trials and cohorts using RIF-based regimens

- INH resistance is clinically relevant, and is not reliably managed with contemporary DOTS regimens
- The data behind current recommendations for managing INH resistance is a "dog's breakfast" of inadequate trials and cohort studies

- Latent TB infection
 - Solid progress that is making a difference in the clinic
 - Inclusion of key sub-groups in clinical trials
 - Key remaining issue managing the many drug interactions of RIF and RPT
- Drug-susceptible TB
 - Overly focused on increasing regimen potency
 - We need clinical trials evaluating interventions to improve tolerability
- Drug-resistant TB
 - Don't forget INH resistance the source of new MDR cases