This year’s State of the Air Report is once again packed with articles on some of the most important issues affecting air quality in BC.

Volatile Organic Compounds (VOCs) are a broad class of air pollutants, with thousands of different species. In this Report, we demystify VOCs: their sources, characteristics, and human health and air quality impacts. We also look at initiatives to curb VOC emissions from motor vehicles, the petroleum sector, and everyday commercial and consumer products.

We have a follow-up article on small air quality sensors, which continue to create a huge interest due to their low cost and ease of use. Though not without limitations, these sensors enable “citizen science” activities, and can support government monitoring, reporting, and forecasting efforts, especially during adverse air quality events like wildfires.

The wildfires of 2018 proved to be even worse than the previous year’s, burning a much larger area and raising particulate matter (PM$_{2.5}$) concentrations across BC for most of August. Metro Vancouver was under air quality advisories for 18 days, while some areas in the central and southern interior and southeastern BC were under Smoky Skies Bulletins for over 40 days.

Fittingly, the 16th Annual BC Lung Association Air Quality & Health Workshop focused on the growing threat of wildfire smoke to air quality and public health. Leading authorities gathered to discuss the impacts of - and the efficacy of programs designed to address - wildfire smoke. This year’s Clean Air Champion, Glen Okrainetz, was also recognized at the event.

Before retiring from government service, Glen served in various capacities and helped develop the BC Air Action Plan, which spawned several air quality programs in our province, including the Provincial Wood Stove Exchange Program. We have feature stories on both Glen and our workshop in this report.

In closing, I wish to thank all the individuals and agencies who shared their time, energy, and expertise to make this year’s Report happen. Until the next edition!

CHRISTOPHER LAM
President and CEO, BC Lung Association
Demystifying VOCs

What are VOCs?
Volatile Organic Compounds (VOCs) are a broad class of air pollutants that (1) contain at least one carbon atom and (2) readily evaporate under normal atmospheric pressure. There are thousands of different VOCs that vary by chemical composition, structure, and behavior. Most air quality programs focus on the most abundant compounds, which typically have 2-12 carbon atoms.

Where do VOCs come from?
Both natural sources and human activities contribute to the VOCs found in the air. In rural or forested areas, natural sources contribute more VOCs to outdoor air than human activities. In urban areas, emissions from vehicles and the chemical products sectors account for a greater proportion of outdoor VOCs (Figure 1). Indoor sources of VOCs include building materials, consumer products, and cigarette smoke. Typically, VOC concentrations are higher indoors than outdoor.¹

How are VOCs measured in BC?
VOCs are sampled in BC as part of the National Air Pollution Surveillance (NAPS) Program. Gas samples are collected in specially prepared canisters over a 24-hour period every 6 or 12 days by provincial or Metro Vancouver staff. The filled canisters are then shipped to a federal laboratory in Ottawa for analysis by Environment and Climate Change Canada, where up to 175 different VOC species can be detected. VOC-related odours range from pleasant (e.g. the scent of pine trees) to offensive (e.g. the smell of composting materials). Some people are very sensitive to odours, and find the smell distressing. Although concentrations of VOCs at these odor thresholds are generally not harmful to health, stress is a known risk factor for cardiovascular diseases.

Why are VOCs a concern?
Some types of VOCs have direct effects on human health and some types contribute to smog formation that in turn may affect human health and the environment. Additionally, some VOCs are associated with a pungent odour that may range from pleasant-smelling to offensive. The health effects of VOCs depend on the specific VOC and the level and duration of exposure. Short-term exposure to moderate levels of many VOCs may cause acute irritation of the eyes, nose, and throat, and headaches. Short-term exposure to higher levels may cause more severe effects, such as nausea or loss of consciousness. Long-term exposure to VOCs in the workplace may cause neurological effects, liver damage, and cancer. For example, the International Agency for Research on Cancer (IARC) has identified benzene and formaldehyde as human carcinogens.² For more information, see: https://toxtown.nlm.nih.gov/chemicals-and-contaminants/volatile-organic-compounds-vocs.

Are VOC odours a health concern?
VOC-related odours range from pleasant (e.g. the scent of pine trees) to offensive (e.g. the smell of composting materials). Some people are very sensitive to odours, and find the smell distressing. Although concentrations of VOCs at these odor thresholds are generally not harmful to health, stress is a known risk factor for cardiovascular diseases.

How do VOCs contribute to smog & haze?
VOCs can be very reactive in sunlight, contributing to reactions that result in the formation of fine particulate matter (PM₂.₅) and ground-level ozone. These pollutants have both direct and indirect effects on human health and the environment. The blue haze commonly associated with forests (e.g. the Blue Ridge Mountains) is due to the formation of PM₂.₅ resulting from reactions involving naturally occurring VOCs in the presence of sunlight.³ Particles of this size are especially efficient at scattering blue light.⁴

What do we know about the types of VOCs emitted by industry in BC?
Under the Canadian Environmental Protection Act of 1999, all industries are required to submit annual emission reports to the National Pollutant Release Inventory (NPRI). Based on data from the 2017 NPRI, a total of 18,120 tonnes of VOCs were released from over 200 industrial facilities in BC.⁵

The largest VOC emissions were associated with oriented strandboard (OSB) production, pulp and paper, and upstream oil and gas.

What is being done to manage VOC emissions?
Transportation is the largest single source of VOCs in BC. New vehicle emissions standards are being phased in by the federal government and will be fully implemented by 2025. These new standards are 80% more stringent than the previous standards. In addition, new national requirements for VOC emissions from the oil and gas sector are expected to significantly reduce VOC emissions between 2017 and 2035.⁶

Finally, the federal government is working to reduce the VOCs emitted by use of solvents in consumer and commercial products such as household cleaning agents, personal care products, paints, and printing inks.⁷

Figure 1: VOC emissions in the Canadian Lower Fraser Valley (CLFV). 2015. Total VOC emissions: 65,408 tonnes. Reprinted from: http://www.matrozenower.org/servicio-qualit-air-quality Fukushima/2050lower_FraserValleyAirEmissionsInventory.pdf

¹ For more information on VOCs and indoor air quality, see: https://www.healthlinkbc.ca/healthlinkbc/services-indoor-quality-air-quality
² https://www.sen.ca/3
⁵ For more information, see: https://www.canada.ca/en/services/environment/pollution-waste-management/national-pollutant-release-inventory.html
⁶ For more information, see: https://www.canada.ca/en/services/environment/climate-change/sources-emissions-pollution/fossil-fuels-industry/volatile-organic-compounds-consumer-commercial.html
⁷ For more information, see: https://www.canada.ca/en/services/environment/climate-change/sources-emissions-pollution/fossil-fuels-industry/volatile-organic-compounds-consumer-commercial.html
⁸ For more information, see: https://www.canada.ca/en/services/environment/climate-change/sources-emissions-pollution/fossil-fuels-industry/volatile-organic-compounds-consumer-commercial.html

Big Interest in Small Sensors

The proliferation of small, low-cost, air quality sensors has made collection of air quality data accessible to almost anyone. These sensors have some advantages over standard air monitoring equipment used by government agencies: low-cost sensors are easy to use and readily available to the public. As such, these sensors can support “citizen science” projects, in which the public deploys sensors to understand their local air quality. A large network of these sensors can also increase the spatial resolution and coverage of air quality data. However, low-cost sensors also have limitations: their reliability and accuracy can vary, as there are no performance criteria to meet in order to be sold. Furthermore, unlike reference instruments which are audited and calibrated regularly, many small sensors can be calibrated and their performance will degrade, in some cases, in one to two years.

Several government agencies and academic organizations in BC have been exploring the use and performance of these sensors.

Metro Vancouver

Metro Vancouver’s “Air Aware” project aims to learn about the strengths and limitations of low-cost sensors, how they might play a role in Metro Vancouver’s air monitoring network, and how and why the public are using them.

University of Northern BC

The PurpleAir PAII is a low-cost fine particle matter (PM2.5) monitor. Thousands have been installed worldwide, with over 150 across BC. Researchers at the University of Northern British Columbia (UNBC) in Prince George tested six of these sensors and found that readings correlated very well with government instruments. The average correlation – a measure of how well the sensor matches changes in PM2.5 levels – was 0.97 (1.00 is perfect), for 24-hour averages from the six sensors over 450 days. The average difference between the low-cost sensor and ‘gold standard’ instruments was 9.3 μg/m³, but when sensor PM2.5 readings are corrected by UNBC researchers to better match the ‘gold standard’, the average error is reduced to 2.5 μg/m³.

A map of all ‘gold standard’ PM2.5 readings in BC alongside calibrated sensor readings is available at weather.unbc.ca/aqmap. Anyone wishing to have their PurpleAir sensor monitoring readings corrected and included on this map can contact UNBC through the web page.

Environment and Climate Change Canada (ECCC)

ECCC is currently testing low-cost air quality sensors from several manufacturers to assess their performance and limitations over a broad range of meteorological and air quality conditions. The most extensive evaluation thus far has been of the PurpleAir. Testing has been underway for nearly one year and an initial assessment of its accuracy in reporting PM2.5 concentrations and the AQHI, including during wildfire smoke events, has been completed. Next, ECCC is planning to deploy a large number of PurpleAir units in the Prince George area in the summer of 2019, as a pilot study to assess their effectiveness for enhancing wildfire smoke reporting and forecasting. Other activities include developing a rapidly deployable small sensor measurement platform, which could enhance monitoring during high impact air quality events.

In addition, a national working group has been formed to share information and coordinate efforts related to understanding low-cost air quality sensors. The working group consists of representatives of federal departments, provincial and territorial governments, regional air quality agencies and organizations, and university groups.

Updates to the Provincial Air Quality Health Index (AQHI) for Biomass Smoke

The Air Quality Health Index (AQHI) is a tool designed to help people understand what air quality means to their health. It was developed by the federal government, based on the observed relationship between health effects and concentrations of nitrogen dioxide (NO₂), ground-level ozone (O₃), and fine particulate matter (PM₂.₅) in Canadian cities. Of these pollutants, PM₂.₅ has the smallest effect on the overall AQHI equation. In contrast, PM₂.₅ is the most prominent pollutant in the biomass smoke emitted by wildfires, residential wood stoves, wood-fired boilers, and open burning. These are all important sources of air pollution in British Columbia (BC), and they were not being captured very well in the three-pollutant AQHI.

In May 2018 the AQHI for BC was updated to better reflect the effects of biomass smoke on air quality and health across the province. Each hour, two different values are calculated:

2. A one-pollutant index based on the 1-hour average of PM₂.₅ alone (Figure 2).

The higher of these two values is taken as the AQHI for that hour, then reported on provincial and national websites and through the national AQHI and WeatherCAN smartphone apps (both available for Android and iOS). This update to the BC AQHI was based on the observed relationship between PM₂.₅ and respiratory health effects during smoke periods.

The updated AQHI has now been running for an entire year. It performed well during the unprecedented 2018 wildfire smoke season, and during many winter woodsmoke episodes in coastal and mountain communities (Figure 3). From July through September 2018 the one-pollutant index based on PM₂.₅ alone was higher than the three-pollutant index for 33% of recorded hours across the province. From November 2018 through February 2019 the same was true for 40% of recorded hours in communities known to be most affected by residential woodsmoke. These results confirm the need for an updated AQHI to better protect the health of the BC population.

Figure 2: Values of the updated British Columbia Air Quality Health Index (AQHI) for different 1-hour average concentrations of the particulate matter (PM₂.₅). When the measured PM₂.₅ concentration is greater than the index value for the 3-pollutant model, the higher value will be reported.

Figure 3: The reported Air Quality Health Index (AQHI) values for a community affected by residential woodsmoke in late 2018 and early 2019.
How Does BC Measure Up?

Fine Particulate Matter

Fine particulate matter (PM$_{2.5}$) refers to microscopic particles that are 2.5 micrometres or smaller in diameter. Major sources in BC include residential wood combustion, prescribed burning, marine vessels, heavy-duty diesel vehicles, the pulp and paper sector and the mining sector. Inhaled PM$_{2.5}$ can travel deep into the lungs and cause irritation and inflammation. In places with higher baseline concentrations of PM$_{2.5}$, this inflammation further increases, causing higher rates of chronic disease, including heart disease.

In 2018, PM$_{2.5}$ was monitored continuously in more than 60 sites across the province for at least a portion of the year. Annual average concentrations ranged from 4.1 µg/m3 in Powell River to 20.3 µg/m3 in Vanderhoof. A total of 19 sites exceeded the provincial annual objective of 8 µg/m3. Furthermore, a staggering 46 of 51 sites with sufficient data exceeded the provincial 24-hour objective of 25 µg/m3 due to wildfire smoke (data summarized in Technical Appendix). In more normal years, the highest PM$_{2.5}$ levels occur in the winter, during periods of stagnant weather conditions. The elevated PM$_{2.5}$ levels observed in 2018 reflect the extreme conditions that much of the province experienced over parts of the summer. The "Trends" section on page 8 provides a comparison of PM$_{2.5}$ in 2018 with the past nine years.

Sulphur Dioxide

Sulphur dioxide (SO$_2$) is a colourless gas with a pungent odour at higher concentrations. Major sources of SO$_2$ include the upstream oil and gas sector, metal smelting facilities, the pulp and paper sector and marine vessels. Short-term exposures to SO$_2$ can aggravate asthma and increase respiratory symptoms.

In 2018, SO$_2$ was monitored at 45 sites, excluding mobile and industrial fenceline sites. One-hour SO$_2$ levels ranged from 1 ppb in Williams Lake to 146 ppb at Trail-Butler Park. The majority of monitoring sites recorded 1-hour levels less than 10 ppb. Trail-area sites were the only locations to observe exceedances of the provincial objective of 75 ppb in 2018.

Ground-level Ozone

Ground-level ozone (O$_3$) is a reactive gas that forms in the atmosphere from reactions involving nitrogen oxides (NOx) and hydrocarbons in the presence of sunlight. A major source of both NOx and hydrocarbons in BC is the transportation sector, including motor vehicles. Short-term exposures can cause breathing difficulties, an aggravation of asthma symptoms and other lung diseases, and premature death.

There is growing evidence that long-term exposures may be associated with the development of respiratory effects, especially in the young and the elderly.

In 2018, O$_3$ was monitored at 46 monitoring sites. Eight-hour concentrations ranged from 38 ppb in Downtown Vancouver to 77 ppb in Mission. A total of seven monitoring sites exceeded the level of the national standard of 63 ppb. These included five sites in the Fraser Valley Regional District (FVRD) (Mission, Hope, Abbotsford, Agassiz and Chilliwack) and two sites in Metro Vancouver (Maple Ridge and Langley). Similar to 2017, it is anticipated that the high O$_3$ levels in the FVRD were a function of sunny, warm conditions and periodic wildfire smoke.

Nitrogen Dioxide

Nitrogen dioxide (NO$_2$) is a reddish-brown gas that is associated with emissions from high-temperature combustion. NO$_2$ is mostly formed in the atmosphere as a result of reactions between nitrogen oxides (NOx) and ground-level ozone. The largest sources of NO$_2$ in BC include the transportation sector and industry. Short-term exposures to NO$_2$ are linked to respiratory illness, and there is growing evidence of effects from long-term exposure, including cardiovascular mortality, cancer and reproductive effects.

In 2018, NO$_2$ levels were monitored at more than 50 sites. One-hour concentrations ranged from 18 ppb in Powell River to 52 ppb at Prince George, Fort St. John and Vancouver-Clark Drive. All sites were below the provincial objective of 100 ppb and the national standard of 60 ppb over one year. Although the peak 1-hour concentrations of NO$_2$ were similar in Prince George, Fort St. John and Vancouver, on average, NO$_2$ concentrations were highest in Vancouver (19.2 ppb) and other sites in Metro Vancouver located in proximity to major transportation routes. In contrast, annual NO$_2$ levels in Prince George (10.4 ppb) and Fort St. John (7.0 ppb) were significantly lower. See the Technical Appendix for annual concentrations at other BC sites.

1. Based on the annual 97.5th percentile of daily one-hour maximum concentration.
2. Based on the annual 98th percentile of daily average concentration.
3. Based on the annual 95th percentile of daily average concentration.
4. Based on annual 98th percentile of daily one-hour maximum concentration.
5. Based on similar statistical form as presented, but averaged over three years.
6. The Canadian Ambient Air Quality Standard (CAAQS) of 60 ppb is based on a three-year average.
TRENDS
Air Pollution Through the Years

We look at trends in air pollution to assess the effectiveness of actions to improve air quality and to determine the need for additional work. The following figures provide 10-year trends in annual concentrations in the most heavily populated areas of the province, and the minimum and maximum concentrations across all BC sites.

PM2.5 levels (shown as annual average) have been increasingly influenced by wildfire smoke over the past decade. In 2014 and 2015, wildfire impacts on PM2.5 levels were observed in parts of the province (e.g. Prince George and Kelowna). In 2017 and 2018 especially, wildfire smoke was widespread. Several sites, including Prince George, Kelowna, Chilliwack and Victoria, observed their highest average concentrations over the past decade in 2018.

Ozone levels (shown as 4th highest daily 8-hour maxima) are also known to be influenced by wildfire smoke. Siberian wildfire smoke in 2012 and BC wildfires in 2015, 2017 and 2018 are believed to have contributed to higher ozone levels in these years.6,7

SO2 levels (shown as annual average) in urban areas remain low – less than 3 ppb throughout the last decade. This reflects efforts to reduce sulphur content in motor vehicle and marine fuels and a reduction of emissions from the petroleum refining and cement industries.

NO2 levels (shown as annual average) have generally declined in urban areas over the past decade, largely due to more stringent vehicle emission standards and other local actions. There is evidence that trends have bottomed out or have begun to increase. The introduction of new vehicle emission standards, beginning in 2017, is expected to result in improved air quality over the next decade as the new technology penetrates the vehicle fleet.

This year’s recipient of the award is Mr. Glen Okrainetz.

In recognition of his numerous contributions over the past decade to protect air quality in BC, Glen Okrainetz is recognized as this year’s Clean Air Champion. “Glen has been a tireless supporter of air quality in the province and has led the BC Lung Air Quality/Health Steering Committee for 15 years. He is well-respected among his colleagues and this report would not have been possible without his support,” says Dr. Menn Biagtan, VP, Health Initiatives and Programs of the BC Lung Association.

Until his retirement in December 2018, Glen was the Director of the Clean Air, Integrated Pest Management and Industry Section of the Ministry of Environment and Climate Change Strategy. He worked around the streets of Victoria. Although Glen has retired from his work with the Ministry, he remains active in the environmental field. Glen continues to sit on the Board of Directors of the Scrap-It Program, and to ride his bicycle to promote the shift to cleaner forms of residential shipping industry to support green ports and marine vessels.

The BC Lung Association’s Air Quality/Health Steering Committee annually awards the title of “Clean Air Champion” to a deserving recipient who has made a significant contribution to the field of air quality. The contribution may have been in any aspect of air quality, including basic science, epidemiology, public health, advocacy, education, and innovations. Nominees may be an individual or an organization, including public interest groups, academics, local governments, private companies and others.

This was the chair of the BC Lung Association Air Quality/Health Steering Committee. He brought to the table his leadership skills, his ability to ‘connect the dots,’ his support for collaborative solutions, and boundless humour,” says Michael Brauer, Professor, School of Population and Public Health UBC.

“Some people who have seen us interact probably think I am enjoying Glen’s retirement as much as he is. But I have a tremendous respect and admiration for the work he did on ensuring clean, healthy air throughout BC, and working with local airsheds such as Metro Vancouver. Thanks Glen!” says Roger Quan, Director of Air Quality and Climate Change, Metro Vancouver.

Although Glen has retired from his work with the Ministry, he remains active in the environmental field. Glen continues to sit on the Board of Directors of the Scrap-It Program, and to ride his bicycle around the streets of Victoria.
2018 Even Worse than 2017 for Wildfire Smoke

After the unprecedented 2017 wildfire season, no one expected that the 2018 season would be even worse for wildfires and smoke in BC. Although the 2018 wildfires were not as disruptive or destructive as those in 2017, the area they burned was even larger and their air quality impacts were more extreme. Concentrations of fine particulate matter (PM2.5) were elevated across the province for most of August (Figure 4), with the highest measurements in the central and southern interior where the fires were most intense. Even still, weather conditions transported heavy smoke to coastal areas, and Metro Vancouver was under air quality advisory for a record 22 days, of which 18 days were related to wildfire smoke.

Exposure to wildfire smoke has been associated with a wide range of acute health effects, especially for people with respiratory conditions such as asthma and chronic obstructive pulmonary disease (COPD). Evidence also suggests that people with heart conditions are at higher risk. Given that wildfire seasons are getting longer and more intense across North America, Europe, and Australia, there will be many new research on the short- and long-term health effects of wildfire smoke in the coming years. We cannot predict what the 2019 wildfire season will bring for BC, but we should now approach every summer prepared for another record-setting year. The best way to reduce any health risks from wildfire smoke is to reduce your smoke exposure by (1) keeping the indoors as smoke-free as possible and (2) limiting exercise outdoors when it is smoky. New fact sheets from the BC Centre for Disease Control (BCCDC) can help you to prepare and protect yourself. http://www.bccdc.ca/health-professionals/professional-resources/wildfire-smoke

Response-planning

On February 6, 2019 the BC Lung Association held its 16th annual Air Quality and Health Workshop at the Pinnacle Hotel in Vancouver. The topic was Wildfire Smoke: A Growing Threat to Air Quality and Public Health, which drew considerable interest after the extreme 2017 and 2018 wildfire seasons. The objectives of the workshop were to: (1) describe the complex wildfire smoke mixture; (2) review what is already known about the health effects of wildfire smoke based on historic events; (3) summarize the expected impacts of climate change on wildfire and smoke over the coming decades; (4) discuss the effectiveness of individual and community interventions for wildfire smoke protection; and (5) identify critical gaps in the current toxicological, epidemiological, and intervention evidence.

Dr. Sarah Henderson from the BC Centre for Disease Control (BCCDC) gave an overview of wildfire smoke protection; and (5) identify critical gaps in the current toxicological, epidemiological, and intervention evidence.

Dr. Sarah Henderson from the BC Centre for Disease Control (BCCDC) gave an overview of wildfire smoke and health in BC and elsewhere over the past 20 years and some insight into the next 20 years. Dr. Michael Flannigan from the University of Alberta followed with a talk about the changing wildfire regime in western Canada, and the spectre of even longer and more extreme seasons in BC and Alberta.

Dr. Ian Gilmour from the Environmental Protection Agency (EPA) described the constituents of smoke, which is an extremely complex mixture of organic and inorganic gases and particles. He then went on to present exciting work from his lab on the toxicology of wildfire smoke, especially the effects of smoke from different fuels and different fire temperatures. The overall findings were that smoke had significant respiratory and cardiovascular effects in animals. Dr. Colleen Reid from the University of Colorado then reviewed what is known about the health effects of wildfire smoke in humans. While there is clear and growing evidence of acute respiratory and cardiovascular effects in animals, Dr. Gilmour then discussed the extensive contributions of Glen Okrainetz, who retired from the BC Ministry of Environment and Climate Change Strategy in December 2018. Finally, Glen took the stage to reiterate the importance of wildfire smoke as an air quality and public health issue in the changing climate.

The workshop was attended by more than 200 participants from government agencies, universities, non-governmental organizations, and the private sector. For the first time, the workshop was also made available via live stream, and more than 50 people participated remotely. So far many of the participants said that this conference was the best. Although there were many lessons learned.

Dr. Robert Brook from the University of Michigan discussed the health protective offered by portable air cleaners and face masks, including some new evidence from studies conducted in highly polluted cities. Dr. John Balmes from the Berkeley School of Public Health then discussed his own experiences during recent wildfire seasons in California, and the limited evidence for community-based interventions to protect people from smoke exposures. Prior to the final talk, Roger Quan from Metro Vancouver spoke in recognition of the extensive contributions of Glen Okrainetz, who retired from the BC Ministry of Environment and Climate Change Strategy in December 2018. Finally, Glen took the stage to reiterate the importance of wildfire smoke as an air quality and public health issue in the changing climate.

The workshop was attended by more than 200 participants from government agencies, universities, non-governmental organizations, and the private sector. For the first time, the workshop was also made available via live stream, and more than 50 people participated remotely. So far many of the participants said that this conference was the best. Although there were some problems with sound quality, we hope to offer the online option again in future. Planning for the 17th annual workshop has already begun.
Updates from Partner Agencies

Regulatory Updates
The Ministry of Environment and Climate Change Strategy (ENV) is finalizing proposed revisions to the Open Burning Smoke Control Regulation. Information on the proposed changes can be found at https://www2.gov.bc.ca/gov/content/environment/natural-resource-stewardship/laws-regulations/legislation-regulation/environmental-protection-regulatory-review/open-burning-smoke-control-regulation. If the proposal is adopted before summer, new burning rules will be in effect for the fall burning season.

Provincial Wood Stove Exchange Program
The province increased its funding of the Provincial Wood Stove Exchange Program from $200,000 in 2017 to $300,000 in 2018. This funding will support wood stove exchange programs in 15 BC communities, and will include incentives of $250 for changing to a cleaner-burning wood stove, and $400 for changing to a qualifying electric heat pump, gas or propane stove, or pellet-fuelled stove. Individual communities may provide additional incentives to residents, over and above those provided by the province. For more information on the Provincial Wood Stove Exchange Program, see: https://www2.gov.bc.ca/gov/content/environment/air-emissions/air-quality/measuring/kitimat-so2-alert-pilot-project.

Air Quality Monitoring Network
In 2018, ENV installed a new and fully-equipped air quality monitoring station at the Muriel Baxter School in Cranbrook. ENV also supported work by Dr. Peter Jackson of the University of Northern BC to compare the performance of low-cost PM$_{2.5}$ sensors with government reference instruments. For more information on this work, see page 4.

The Province and the Prince Rupert Port Authority have agreed to share information collected by the Port Authority in the Fairview area. This has given the Province access to data from a coastal site in an area of the Province where little air quality data is available. In turn, the Prince Rupert Port Authority’s data is freely available on all regular Ministry reporting channels and the site is operationally audited by an external party.

On January 1, 2018, ENV began a pilot program in Kitimat to issue public alerts when sulphur dioxide (SO$_2$) levels exceed pre-defined thresholds. When triggered, alerts are automatically posted to ENV’s website and sent out to the AQ-advocies.ca website operated by the Bulkley Valley Lakes District Air Management Society, for immediate forwarding to a subscription list. The pilot continues to run at this time. For more information on the pilot, see: https://www2.gov.bc.ca/gov/content/environment/air-emissions/air-quality/measuring/kitimat-so2-alert-pilot-project.

AQHI Update
The AQHI is a tool developed by Canadian health researchers to communicate short-term health risks to the public. Originally based on data from the largest Canadian cities, the AQHI has been shown to periodically under-report health risks during smoky conditions. In 2018, ENV has directly supported the work by the BC CDC to develop an AQHI-Plus to better characterize health risks due to wildfire smoke (for more info, see: page 5).

Air Quality and Climate Change Planning
Metro Vancouver is beginning development of its next regional air quality and greenhouse gas management plan, the Clean Air Plan. The plan will identify opportunities for emissions reductions to protect human health and the environment, minimize the region’s contribution to climate change and improve visual air quality.

Metro Vancouver is also implementing Climate 2050, a new regional climate action strategy, to support transitioning our region to a resilient and low carbon future, and increasing the health, well-being and prosperity of Metro Vancouver residents. The first component of the strategy – the Climate 2050 Strategic Framework – was approved by the Board in 2018. The Clean Air Plan will be developed in 2019-2020 and will be the key air quality and greenhouse gas planning document for Metro Vancouver. Integrated with Climate 2050, it will set the direction for air quality and greenhouse gas management in the region for the next five to ten years.

Regional Air Quality Objectives
Metro Vancouver is initiating consultation to update regional air quality objectives for nitrogen dioxide and ozone, following adoption of new Canadian Ambient Air Quality Standards. The new regional objectives are intended to provide greater human health and environmental protection, and enable air quality management activities and emission reductions in the region.

Reducing Vehicle Emissions
Metro Vancouver has been working to increase the uptake of electric vehicles (EVs) in the region, to support regional emission reductions goals. Programs such as Emotive: The Electric Vehicle Experience (www.emotivebc.ca), EVCondo.ca, and EVWorkplace.ca engage with residents, strata corporations and businesses to lower the barriers to owning and charging an EV. In 2018, Metro Vancouver celebrated its busiest season ever for Emotive, a community outreach campaign founded by Metro Vancouver, the cities of Surrey and Vancouver, Fraser Basin Council and the Province of BC, which aims to raise awareness of plug-in electric vehicles in BC. In Metro Vancouver, Emotive was at 45 community events in 2018, and the 2019 schedule includes 50 events.

Regulatory Updates
Metro Vancouver is taking measures to address residential wood smoke, which is responsible for more than a quarter of PM$_{2.5}$ emissions in the region and can cause respiratory and cardiac health effects. Following consultation with residents, businesses, and health agencies, a new bylaw is being developed, which, if adopted, would complement a variety of educational and incentive programs currently in place to reduce wood smoke from indoor wood-burning stoves and fireplaces across the region. The new bylaw is expected to include a phased approach to regulate the emissions, with seasonal restrictions, registration requirements, and limits on the operation of older, more polluting wood-burning devices.

Metro Vancouver is seeking ways to reduce odour emissions across the region, following increasing public complaints about odours from a variety of sources, which could include compost and food processing facilities. Odoorous air contaminants have the potential to cause effects ranging from nuisance when present at low levels to health effects when frequently present at elevated levels. Metro Vancouver will be engaging with local communities, businesses, and municipalities over the summer and fall to share information about enhancing odour management in the region.

Diesel engine exhaust is a leading air quality threat to human health in Metro Vancouver, containing a complex mixture of air contaminants. Non-road engines, such as loaders, tractors and other equipment, are a primary source of diesel emissions. To reduce emissions from older, higher emitting non-road diesel engines, Metro Vancouver has implemented its Non-Road Diesel Engine Bylaw. Since 2015, the Bylaw has prohibited the registration of Tier 0 engines, the oldest, highest-emitting engines. Beginning in 2020, similar measures for Tier 1 engines will apply in the region. An outreach campaign will be launched in June about the Tier 1 engine registration deadline and prohibition against introducing previously unregistered Tier 1 engines into the region.

For updates on consultation activities, visit www.metrovancouver.org/services/air-quality/consultation.

Air Quality Monitoring and Preparing for Wildfires
Metro Vancouver is enhancing the way it responds to air quality impacts from wildfires, following unprecedented levels of smoke during the past four years and anticipated changes in the frequency, duration and severity of wildfires.
wildfires in the future as a result of climate change.

Metro Vancouver operates a network of 31 air quality monitoring stations from Horseshoe Bay to Hope and issues air quality advisories whenever air quality is expected to reach unhealthy levels. During the summers of 2015, 2017 and 2018, Metro Vancouver experienced significantly increased wildfire smoke impacts. The 14-day advisory in August 2018 was the longest continuous advisory period in the history of Metro Vancouver’s air quality program.

Since late 2017, Metro Vancouver has been working with local health authorities, BC Centre for Disease Control, Health Canada, the BC Ministry of Environment and Climate Change Strategy, and the Fraser Valley Regional District to develop more effective information for residents on wildfire smoke health impacts and interventions for reducing them. Opportunities for early outreach and messaging before air quality degrades to levels that warrant an advisory are also being investigated.

Caring for the Air

Metro Vancouver’s annual Caring for the Air Report has more air quality and climate change stories at www.metrovancouver.org/air.

Frasier Valley Regional District (FVRD)

Wildfire Smoke Communications

In the summer time, FVRD residents are often exposed to hazardous smoke, both from local wildfires and from burning forests far away. These episodes have become longer and more frequent in recent years. Our part of the airshed is prone to accumulating higher levels of toxic air pollutants from smoke than the rest of the region and it is important that our residents know how to protect themselves and their families. The FVRD collaborates with the regional health agencies and neighbouring jurisdictions to develop meaningful and timely messages about how smoke affects air quality and health and how to protect oneself from those effects.

“Love Our Air!” for Schools

FVRD outreach efforts have been greatly enhanced through the 2017 launch of a well-received school program called “Love our Air!”, a portfolio of lessons and custom workshops designed for Grades 5 and 10 Science classrooms. The program focuses on developing students’ respect for the environment and understanding how to reduce pollution through their everyday actions. Students learn to identify types of air pollutants, their sources and impacts, as well as possible actions and solutions that they can take as individuals, or with their community. The program has been offered in every part of the region, including small communities. It will continue in the 2019/2020 school year.

Electric Vehicles

The FVRD continues to partner with Emotive: The Electric Vehicle Experience campaign in the region. This campaign brings electric vehicles to events throughout the region to show residents how great electric vehicles are to drive. An Emotive booth was set up at key events in the region, such as the Abbotsford Airshow and the Agassiz Fall Fair and Corn Festival.

Radon Awareness

New radon data indicates that some areas in the FVRD have radon levels that are of concern. Long-term exposure to indoor radon buildup results in an increased risk of developing lung cancer. Due to the potential health concerns associated with it, the FVRD is working with health agencies to support their initiatives on improving radon awareness throughout the region and protect residents from potentially unsafe exposure.

“Love Our Air!” for Schools

FVRD outreach efforts have been greatly enhanced through the 2017 launch of a well-received school program called “Love our Air!”, a portfolio of lessons and custom workshops designed for Grades 5 and 10 Science classrooms. The program focuses on developing students’ respect for the environment and understanding how to reduce pollution through their everyday actions. Students learn to identify types of air pollutants, their sources and impacts, as well as possible actions and solutions that they can take as individuals, or with their community. The program has been offered in every part of the region, including small communities. It will continue in the 2019/2020 school year.

Wildfire Smoke Communications

In the summer time, FVRD residents are often exposed to hazardous smoke, both from local wildfires and from burning forests far away. These episodes have become longer and more frequent in recent years. Our part of the airshed is prone to accumulating higher levels of toxic air pollutants from smoke than the rest of the region and it is important that our residents know how to protect themselves and their families. The FVRD collaborates with the regional health agencies and neighbouring jurisdictions to develop meaningful and timely messages about how smoke affects air quality and health and how to protect oneself from those effects.

“Love Our Air!” for Schools

FVRD outreach efforts have been greatly enhanced through the 2017 launch of a well-received school program called “Love our Air!”, a portfolio of lessons and custom workshops designed for Grades 5 and 10 Science classrooms. The program focuses on developing students’ respect for the environment and understanding how to reduce pollution through their everyday actions. Students learn to identify types of air pollutants, their sources and impacts, as well as possible actions and solutions that they can take as individuals, or with their community. The program has been offered in every part of the region, including small communities. It will continue in the 2019/2020 school year.

Wildfire Smoke Communications

In the summer time, FVRD residents are often exposed to hazardous smoke, both from local wildfires and from burning forests far away. These episodes have become longer and more frequent in recent years. Our part of the airshed is prone to accumulating higher levels of toxic air pollutants from smoke than the rest of the region and it is important that our residents know how to protect themselves and their families. The FVRD collaborates with the regional health agencies and neighbouring jurisdictions to develop meaningful and timely messages about how smoke affects air quality and health and how to protect oneself from those effects.

“Love Our Air!” for Schools

FVRD outreach efforts have been greatly enhanced through the 2017 launch of a well-received school program called “Love our Air!”, a portfolio of lessons and custom workshops designed for Grades 5 and 10 Science classrooms. The program focuses on developing students’ respect for the environment and understanding how to reduce pollution through their everyday actions. Students learn to identify types of air pollutants, their sources and impacts, as well as possible actions and solutions that they can take as individuals, or with their community. The program has been offered in every part of the region, including small communities. It will continue in the 2019/2020 school year.

Wildfire Smoke Communications

In the summer time, FVRD residents are often exposed to hazardous smoke, both from local wildfires and from burning forests far away. These episodes have become longer and more frequent in recent years. Our part of the airshed is prone to accumulating higher levels of toxic air pollutants from smoke than the rest of the region and it is important that our residents know how to protect themselves and their families. The FVRD collaborates with the regional health agencies and neighbouring jurisdictions to develop meaningful and timely messages about how smoke affects air quality and health and how to protect oneself from those effects.

“Love Our Air!” for Schools

FVRD outreach efforts have been greatly enhanced through the 2017 launch of a well-received school program called “Love our Air!”, a portfolio of lessons and custom workshops designed for Grades 5 and 10 Science classrooms. The program focuses on developing students’ respect for the environment and understanding how to reduce pollution through their everyday actions. Students learn to identify types of air pollutants, their sources and impacts, as well as possible actions and solutions that they can take as individuals, or with their community. The program has been offered in every part of the region, including small communities. It will continue in the 2019/2020 school year.

Wildfire Smoke Communications

In the summer time, FVRD residents are often exposed to hazardous smoke, both from local wildfires and from burning forests far away. These episodes have become longer and more frequent in recent years. Our part of the airshed is prone to accumulating higher levels of toxic air pollutants from smoke than the rest of the region and it is important that our residents know how to protect themselves and their families. The FVRD collaborates with the regional health agencies and neighbouring jurisdictions to develop meaningful and timely messages about how smoke affects air quality and health and how to protect oneself from those effects.